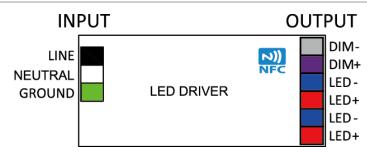
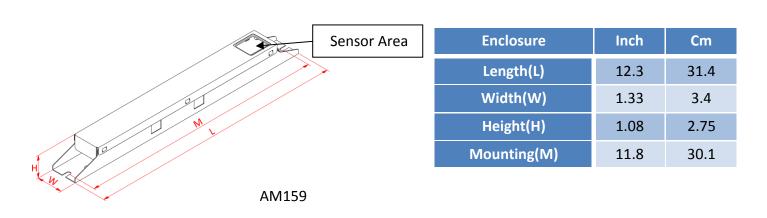


Programmable LED Driver


	Model Name	P3C1400S40D				
	Output Model	Constant Current				
	Input Voltage	347 Vac				
	Input Frequency	50/60 Hz				
T C Contrar on The Lynness D	Dimming	3 in 1 (PWM, 1-10V, Resistance) Dim to 1%, 10%, OFF				
	Surge Rating	2KV				
	Warranty	5 Years TC≦75°C 3 Years 75°C≦TC≦90°C				

FC C C SUS	O IP 30	RoHS	N)) NFC	0-10V DIMMER 0 10V	Class2
------------	-------------------	------	------------	--------------------------	--------

Output		Output			Input	Input		THD		Efficiency
Power	Voltage	Current	Temp.	lemp.	Current	Power	Current		Factor	
(W)	(V)	(A)	(°F/°C)	(°F/°C)	(A)	(W)	(A)	(%)		(%)
Max.	15-55	0.4-1.4	Min	Max.	014@247	48	Max.	Max.	Min.	Тур.
40	40	0.4-1.4	32/0	194/90	0.14@347V	48	35	20	0.9	82


Wire Diagram

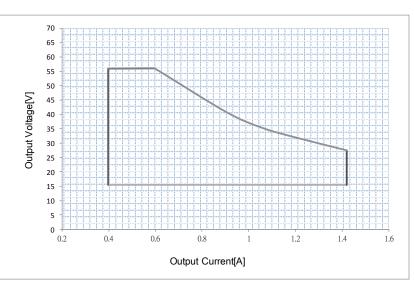
Product Specification

Maximum Wiring Distance (at full load) is 18AWG/18Feet LED case should be grounded

Enclosure

Published 2018/04/10

Revised 2019/11/25


Programmable LED Driver

Programmable Tool

- Put the programmable wand above the NFC mark of the driver to start \geq programming
- Download the software from www.antron.com.tw

Iout vs Vout Curve

Output Current Code List

Output Current Code List									
Current	Correspond lout Code				Current	Correspond lout Code			
Value	Location				Value	Location			
(mA)	0	1	2	3	(mA)	0	1	2	3
400	4A	01	00	01	950	2F	03	00	01
450	7C	01	00	01	1000	57	03	00	01
500	A4	01	00	01	1050	84	03	00	01
550	D1	01	00	01	1100	B1	03	00	01
600	FE	01	00	01	1150	D9	03	00	01
650	26	02	00	01	1200	06	04	00	01
700	53	02	00	01	1250	42	04	00	01
750	85	02	00	01	1300	60	04	00	01
800	A8	02	00	01	1350	88	04	00	01
850	D7	02	00	01	1400	78	05	00	01
900	02	03	00	01					

Note: For drivers containing Revision C of their firmware (contact factory for date code of implementation), it is also possible to adjust the minimum dimming level and the dimming speed by programming the location 2.

Published 2018/04/10

www.antron.com.tw

Programmable Driver Options (App Note)

All programmable drivers accept a 16-bit hexadecimal code to program the output current (lout) of the driver. The lout programming codes are documented in the computer based-programming software (ST-TOOLS.exe) or from the driver's IOUTCODE.pdf file. The Locations below 0, 1, 2, 3 contain the basic code for a specific output current value (example 84 03 00 01 = 1050 mA for PAC1400S50D).

Location | 0 | 1 | 2 | 3 | Value | 00 | 00 | 00 | 00 |

For drivers containing Revision C of their firmware (contact factory for date code of implementation), it is also possible to adjust the minimum dimming level and the dimming speed. This adjustment is made by modifying location 2 of the programming code while keeping the other locations set for the desired output current. Specifically, the location 3 values are defined as:

- 00 => Dim to 1%, Speed ≤ 1.0 sec
- 01 => Dim-to-OFF, Speed \leq 1.0 sec
- 02 => Dim to 10%, Speed \leq 1.0 sec
- 03 => Dim to 1%, Speed \geq 2.5 sec
- 04 => Dim-to-OFF, Speed ≥ 2.5 sec
- 05 => Dim to 10%, Speed ≥ 2.5 sec

As an example, if the programming code value of 84 03 00 01 is programmed, the output current will be 1050 mA, and the driver will dim to 1% and the dimming speed will be \leq 1.0 sec. If the programming code of 84 03 04 01 is programmed, the output current will be 1050 mA, and the driver will dim to off and the dimming speed will be \geq 2.5 sec.

Data is based upon tests performed by Antron Electronics in a controlled environment and representative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

Published 2018/04/10